Dans cet article, nous vous guiderons étape par étape dans le processus de conversion du nombre décimal ,54 en fraction. Nous commencerons par comprendre comment un nombre décimal représente la partie fractionnaire d'un nombre, puis décomposerons les étapes pour réécrire ,54 sous forme de fraction. Enfin, nous simplifierons la fraction en identifiant et en appliquant le plus grand facteur commun, en veillant à ce que les résultats soient sous la forme la plus simple.
À la fin de ce guide, vous devriez avoir une bonne compréhension des conversions décimales en fractions et être capable d'appliquer ces connaissances à divers problèmes mathématiques. Commençons.
Étape 1 :
Tout d'abord, nous exprimons ,54 sous forme de fraction en le plaçant sur 1 :Étape 2 :
Ensuite, nous multiplions à la fois le numérateur et le dénominateur par 10 pour chaque chiffre après le point décimal.Étape 3 :
Ensuite, nous trouvons le Plus Grand Facteur Commun (PFC) pour 54 et 100. Gardez à l'esprit qu'un facteur est simplement un nombre qui divise un autre nombre sans reste.Étape 4 :
Pour simplifier la fraction, nous divisons à la fois le numérateur et le dénominateur par leur plus grand facteur commun (PFC), que nous avons calculé à l'étape précédente. La valeur du PFC est 2 dans ce cas.Découvrez comment différents nombres décimaux peuvent être exprimés sous forme de fractions.
La pratique rend parfait ! Développez vos compétences en convertissant des décimales en fractions en suivant ces exemples étape par étape :
Lisez la section suivante pour vous aider à approfondir votre compréhension des concepts mathématiques de base.
Les fractions propres sont des fractions où le numérateur (le chiffre du dessus) est inférieur au dénominateur (le chiffre du dessous). Exemple 2/3
Le plus grand facteur commun est aussi appelé le plus grand diviseur commun. En mathématiques, cela fait référence au plus grand diviseur commun de deux ou plusieurs nombres entiers (aussi appelés entiers). En termes simples, c'est le plus grand nombre qui peut diviser uniformément deux ou plusieurs nombres. Par exemple, le PGFC pour 4 et 8 est 4.
Les États-Unis sont l'un des rares pays au monde à utiliser encore le système impérial de mesures, qui est un système de mesures fractionnelles, où les objets sont mesurés en pieds, pouces, livres, onces, yards, etc. La majorité du reste du monde utilise le système métrique, qui est un système de mesures décimales, où les objets sont mesurés en cm, mètres, grammes, kilos, etc.
Les nombres premiers sont des nombres supérieurs à 1 qui n'ont que deux facteurs : 1 et eux-mêmes. Des exemples incluent 2, 3, 5, 7, 11, 13, 17, etc.
Les nombres composés sont des nombres supérieurs à 1 et ayant plus de deux facteurs. Par exemple, 6 est un nombre composé car il a les facteurs 1, 2, 3 et 6.
Pour convertir une décimale en fraction, écrivez la décimale sous forme de fraction avec un dénominateur de 10, 100, ou 1000 en fonction des décimales, puis simplifiez. Par exemple, 0.75 = 75/100 = 3/4. Consultez notre page sur les décimales ici pour une explication détaillée..
Il existe de nombreuses ressources en ligne (certaines gratuites et d'autres payantes) pour apprendre les mathématiques, notamment les décimales et les fractions. Elles vont des jeux interactifs aux cours et leçons approfondis. Nous recommandons ces sites Web comme une ressource précieuse pour les étudiants de tous niveaux.
Améliorez vos compétences en mathématiques avec Brilliant.org, des énigmes interactives de résolution de problèmes conçues pour les adultes. L'algèbre, la géométrie, la logique et la probabilité sont abordées avec des guides vidéo.
Planète mathématique propose des cours de mathématiques personnalisés pour les lycéens.
Pour des cours autodidactes d'algèbre, nous recommandons Mathématiques violettes.