Dans cet article, nous vous guiderons étape par étape dans le processus de conversion du nombre décimal 0,038 en fraction. Nous commencerons par comprendre comment un nombre décimal représente la partie fractionnaire d'un nombre, puis décomposerons les étapes pour réécrire 0,038 sous forme de fraction. Enfin, nous simplifierons la fraction en identifiant et en appliquant le plus grand facteur commun, en veillant à ce que les résultats soient sous la forme la plus simple.
À la fin de ce guide, vous devriez avoir une bonne compréhension des conversions décimales en fractions et être capable d'appliquer ces connaissances à divers problèmes mathématiques. Commençons.
Étape 1 :
Tout d'abord, nous exprimons 0,038 sous forme de fraction en le plaçant sur 1 :Étape 2 :
Ensuite, nous multiplions à la fois le numérateur et le dénominateur par 10 pour chaque chiffre après le point décimal.Étape 3 :
Ensuite, nous trouvons le Plus Grand Facteur Commun (PFC) pour 38 et 1000. Gardez à l'esprit qu'un facteur est simplement un nombre qui divise un autre nombre sans reste.Étape 4 :
Pour simplifier la fraction, nous divisons à la fois le numérateur et le dénominateur par leur plus grand facteur commun (PFC), que nous avons calculé à l'étape précédente. La valeur du PFC est 2 dans ce cas.Découvrez comment différents nombres décimaux peuvent être exprimés sous forme de fractions.
La pratique rend parfait ! Développez vos compétences en convertissant des décimales en fractions en suivant ces exemples étape par étape :
Lisez la section suivante pour vous aider à approfondir votre compréhension des concepts mathématiques de base.
Les fractions impropres sont des fractions où le numérateur (le chiffre du dessus) est supérieur ou égal au dénominateur (le chiffre du dessous). Exemple 3/2
Les nombres composés sont des nombres supérieurs à 1 et ayant plus de deux facteurs. Par exemple, 6 est un nombre composé car il a les facteurs 1, 2, 3 et 6.
Une décimale périodique est une décimale dans laquelle un chiffre ou un groupe de chiffres se répète à l'infini. Par exemple, 0.3333... (où 3 se répète à l'infini) et 0.142857142857... (où 142857 se répète) sont des décimales périodiques.
Une fraction peut être convertie en décimale en divisant le numérateur par le dénominateur. Par exemple, 3/4 = 3 ÷ 4 = 0.75. Consultez notre page sur les fractions ici pour de nombreux exemples de conversion de fractions en décimales.
L'arrondi des décimales consiste à ajuster un nombre à une valeur décimale donnée. Par exemple, arrondir 3.186 à deux décimales donne 3.19. Notez que le dernier chiffre, qui est 6, est plus proche de 10 que de 1, donc le chiffre avant lui, qui est 8, augmente à 9.
Une barre de fraction est la ligne horizontale qui sépare le numérateur et le dénominateur d'une fraction. Elle représente également la division. Par exemple, dans 2/4, la barre de fraction signifie 2 divisé par 4.
Il existe de nombreuses ressources en ligne (certaines gratuites et d'autres payantes) pour apprendre les mathématiques, notamment les décimales et les fractions. Elles vont des jeux interactifs aux cours et leçons approfondis. Nous recommandons ces sites Web comme une ressource précieuse pour les étudiants de tous niveaux.
Pour une approche d'apprentissage structurée avec des leçons vidéo, essayez Académie Khan.
Pour des leçons personnalisées en tête-à-tête, consultez Preply.com.
Planète mathématique propose des cours de mathématiques personnalisés pour les lycéens.