Wat is 0.0130 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.0130 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.0130 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.0130 als een breuk is 130/10000 of 13/1000

Laten we nu de stappen doornemen voor het omzetten van 0.0130 naar een breuk.

Stap 1:

Allereerst drukken we 0.0130 uit als een breuk door het boven 1 te plaatsen:
0.0130/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.0130 x 10000/1 x 10000
  =  
130/10000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 130 en 10000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 130 zijn: 1 2 5 10 13 26 65 130
De factoren van 10000 zijn: 1 2 4 5 8 10 16 20 25 40 50 80 100 125 200 250 400 500 625 1000 1250 2000 2500 5000 10000
De GGF van 130 en 10000 is: 10

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 10 in dit geval.
130 ÷ 10/10000 ÷ 10
  =  
13/1000


Goed gedaan! We hebben net vastgesteld dat 0.0130 als een breuk gelijk is aan 130/10000 of 13/1000 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:


Voorbeelden van het omzetten van decimalen naar breuken

Oefening baart kunst! Bouw je vaardigheden in het omzetten van decimalen naar breuken door de volgende stapsgewijze voorbeelden te volgen:


Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn gehele getallen?

Gehele getallen zijn de getallen 0, 1, 2, 3, enzovoort. Gehele getallen hebben geen decimale punt of fractie. Gehele getallen zijn altijd positief. Negatieve getallen worden niet als geheel getal beschouwd.

Wat is een decimaal?

Een decimaal is een getal dat een decimale punt bevat, die een fractie van een geheel getal vertegenwoordigt. Bijvoorbeeld, 0.5 vertegenwoordigt 1/2.

Wat is het gemiddelde?

Het gemiddelde, of de mean, wordt berekend door alle getallen in een set op te tellen en te delen door het totaal aantal waarden. Bijvoorbeeld, het gemiddelde van 3, 4 en 5 is (3 + 4 + 5)/3 = 4.

Wat is een decimaal als een percentage?

Een decimaal kan worden omgezet naar een percentage door het met 100 te vermenigvuldigen en een procentteken toe te voegen. Bijvoorbeeld, 0.75 × 100 = 75%.

Wat is een breuk als een percentage?

Een breuk kan worden omgezet naar een percentage door de teller door de noemer te delen en het resultaat met 100 te vermenigvuldigen. Bijvoorbeeld, 3/6 = 1/2 = 0.50 × 100 = 50%.

Wat is een breukstreep?

Een breukstreep is de horizontale lijn die de teller en de noemer van een breuk scheidt. Het vertegenwoordigt ook deling. Bijvoorbeeld, in 2/4, betekent de breukstreep 2 gedeeld door 4.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Voor leerplezier op basis van games, probeer Wonderwiskunde.

Voor vroege leerlingen raden we IXL Wiskunde aan. De wiskundecursussen variëren van Pre-K tot 12de klas.

Desmos.com richt zich op vergelijkingen, functies en visuele grafieken.



© www.asafraction.net