Wat is 0.035 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.035 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.035 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.035 als een breuk is 35/1000 of 7/200

Laten we nu de stappen doornemen voor het omzetten van 0.035 naar een breuk.

Stap 1:

Allereerst drukken we 0.035 uit als een breuk door het boven 1 te plaatsen:
0.035/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.035 x 1000/1 x 1000
  =  
35/1000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 35 en 1000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 35 zijn: 1 5 7 35
De factoren van 1000 zijn: 1 2 4 5 8 10 20 25 40 50 100 125 200 250 500 1000
De GGF van 35 en 1000 is: 5

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 5 in dit geval.
35 ÷ 5/1000 ÷ 5
  =  
7/200


Goed gedaan! We hebben net vastgesteld dat 0.035 als een breuk gelijk is aan 35/1000 of 7/200 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:


Voorbeelden van het omzetten van decimalen naar breuken

Oefening baart kunst! Bouw je vaardigheden in het omzetten van decimalen naar breuken door de volgende stapsgewijze voorbeelden te volgen:


Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn gemengde getallen?

Een gemengd getal bestaat uit een geheel getal en een eigen breuk.

Wat zijn samengestelde getallen?

Samengestelde getallen zijn getallen groter dan 1 die meer dan twee delers hebben. Bijvoorbeeld, 6 is een samengesteld getal omdat het de delers 1, 2, 3 en 6 heeft.

Wat is een repeterende decimaal?

Een repeterende decimaal is een decimaal waarbij een cijfer of een groep cijfers oneindig herhaalt. Bijvoorbeeld, 0.3333... (waar 3 eindeloos herhaalt) en 0.142857142857... (waar 142857 herhaalt) zijn repeterende decimalen.

Wat is een decimaal getal?

Een decimaal getal verwijst naar de positie van een cijfer rechts van de decimale punt. Bijvoorbeeld, in 3.141, staat het cijfer 1 op de duizendsten plaats.

Wat is het afronden van decimalen?

Het afronden van decimalen betekent het aanpassen van een getal naar een bepaalde plaatswaarde. Bijvoorbeeld, het afronden van 3.186 naar twee decimalen geeft 3.19. Let op dat het laatste cijfer, dat is 6, dichter bij 10 ligt dan bij 1, dus het cijfer ervoor, 8, wordt verhoogd naar 9.

Wat is een breuk als een percentage?

Een breuk kan worden omgezet naar een percentage door de teller door de noemer te delen en het resultaat met 100 te vermenigvuldigen. Bijvoorbeeld, 3/6 = 1/2 = 0.50 × 100 = 50%.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Gebruik Study.com voor een vermakelijke videolesbenadering.

Wiskundige Planeet heeft op maat gemaakte wiskundecursussen voor middelbare scholieren.

Cliff-notities is afgestemd op zelfstandig studeren voor de SAT, ACT, GMAT, GRE en AP-examens. Het is een gratis service.



© www.asafraction.net