Wat is 0.05040 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.05040 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.05040 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.05040 als een breuk is 5040/100000 of 63/1250

Laten we nu de stappen doornemen voor het omzetten van 0.05040 naar een breuk.

Stap 1:

Allereerst drukken we 0.05040 uit als een breuk door het boven 1 te plaatsen:
0.05040/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.05040 x 100000/1 x 100000
  =  
5040/100000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 5040 en 100000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 5040 zijn: 1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 21 24 28 30 35 36 40 42 45 48 56 60 63 70 72 80 84 90 105 112 120 126 140 144 168 180 210 240 252 280 315 336 360 420 504 560 630 720 840 1008 1260 1680 2520 5040
De factoren van 100000 zijn: 1 2 4 5 8 10 16 20 25 32 40 50 80 100 125 160 200 250 400 500 625 800 1000 1250 2000 2500 3125 4000 5000 6250 10000 12500 20000 25000 50000 100000
De GGF van 5040 en 100000 is: 80

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 80 in dit geval.
5040 ÷ 80/100000 ÷ 80
  =  
63/1250


Goed gedaan! We hebben net vastgesteld dat 0.05040 als een breuk gelijk is aan 5040/100000 of 63/1250 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:


Voorbeelden van het omzetten van decimalen naar breuken

Oefening baart kunst! Bouw je vaardigheden in het omzetten van decimalen naar breuken door de volgende stapsgewijze voorbeelden te volgen:


Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn vereenvoudigde of gereduceerde breuken?

Vereenvoudigde of gereduceerde breuken zijn breuken waarvan het bovenste getal (de teller) en het onderste getal (de noemer) niet verder kunnen worden verkleind zonder de breuk ongeldig te maken. Dit betekent dat het getal niet meer door een ander getal dan 1 kan worden gedeeld zonder dat het nog een geheel getal blijft. 1/3 is een goed voorbeeld van een volledig vereenvoudigde breuk.

Wat zijn priemgetallen?

Priemgetallen zijn getallen groter dan 1 die slechts twee delers hebben: 1 en zichzelf. Voorbeelden zijn 2, 3, 5, 7, 11, 13, 17 enzovoort.

Wat is de absolute waarde?

De absolute waarde van een getal is de afstand ervan tot nul. Bijvoorbeeld, de absolute waarde van -20 is 20.

Wat is een verhouding?

Een verhouding is een relatie tussen twee getallen die aangeeft hoe vaak de ene waarde in de andere voorkomt. Bijvoorbeeld, de verhouding 3:1 betekent dat er 3 delen van de ene hoeveelheid zijn voor elke 1 deel van een andere.

Wat is het afronden van decimalen?

Het afronden van decimalen betekent het aanpassen van een getal naar een bepaalde plaatswaarde. Bijvoorbeeld, het afronden van 3.186 naar twee decimalen geeft 3.19. Let op dat het laatste cijfer, dat is 6, dichter bij 10 ligt dan bij 1, dus het cijfer ervoor, 8, wordt verhoogd naar 9.

Wat is een breukstreep?

Een breukstreep is de horizontale lijn die de teller en de noemer van een breuk scheidt. Het vertegenwoordigt ook deling. Bijvoorbeeld, in 2/4, betekent de breukstreep 2 gedeeld door 4.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Verbeter je wiskundige vaardigheden met Brilliant.org interactieve probleemoplossingspuzzels ontworpen voor volwassenen. Algebra, geometrie, logica en waarschijnlijkheid worden behandeld met videohandleidingen.

Voor vroege leerlingen raden we IXL Wiskunde aan. De wiskundecursussen variëren van Pre-K tot 12de klas.

Wiskunde is leuk behandelt wiskundige onderwerpen, waaronder decimalen, breuken, gegevens, geld, algebra en calculus. Cursussen zijn ontworpen voor leerlingen van kleuterschool tot 12de klas.



© www.asafraction.net