Wat is 0.08682 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.08682 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.08682 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.08682 als een breuk is 8682/100000 of 4341/50000

Laten we nu de stappen doornemen voor het omzetten van 0.08682 naar een breuk.

Stap 1:

Allereerst drukken we 0.08682 uit als een breuk door het boven 1 te plaatsen:
0.08682/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.08682 x 100000/1 x 100000
  =  
8682/100000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 8682 en 100000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 8682 zijn: 1 2 3 6 1447 2894 4341 8682
De factoren van 100000 zijn: 1 2 4 5 8 10 16 20 25 32 40 50 80 100 125 160 200 250 400 500 625 800 1000 1250 2000 2500 3125 4000 5000 6250 10000 12500 20000 25000 50000 100000
De GGF van 8682 en 100000 is: 2

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 2 in dit geval.
8682 ÷ 2/100000 ÷ 2
  =  
4341/50000


Goed gedaan! We hebben net vastgesteld dat 0.08682 als een breuk gelijk is aan 8682/100000 of 4341/50000 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:



Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn gehele getallen?

Gehele getallen zijn de getallen 0, 1, 2, 3, enzovoort. Gehele getallen hebben geen decimale punt of fractie. Gehele getallen zijn altijd positief. Negatieve getallen worden niet als geheel getal beschouwd.

Wat zijn onjuiste breuken?

Onjuiste breuken zijn breuken waarbij de teller (het bovenste getal) groter dan of gelijk is aan de noemer (het onderste getal). Bijvoorbeeld 3/2

Wat zijn irrationale getallen?

Een irrationaal getal is een getal dat niet kan worden uitgedrukt als een breuk van twee gehele getallen. Voorbeelden zijn π (pi) en √2 (de vierkantswortel van 2).

Wat is een verhouding?

Een verhouding is een relatie tussen twee getallen die aangeeft hoe vaak de ene waarde in de andere voorkomt. Bijvoorbeeld, de verhouding 3:1 betekent dat er 3 delen van de ene hoeveelheid zijn voor elke 1 deel van een andere.

Wat is een decimaal getal?

Een decimaal getal verwijst naar de positie van een cijfer rechts van de decimale punt. Bijvoorbeeld, in 3.141, staat het cijfer 1 op de duizendsten plaats.

Wat is een percentage als een breuk?

Een percentage kan als een breuk worden geschreven door het boven 100 te plaatsen en het te vereenvoudigen. Bijvoorbeeld, 20% = 20/100 = 1/5.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Voor vroege leerlingen raden we IXL Wiskunde aan. De wiskundecursussen variëren van Pre-K tot 12de klas.

Voor een op het VK gebaseerd curriculum biedt BBC.co.uk nuttige hulpmiddelen voor wiskundelessen in de klas.

Fusion Academie biedt 1-op-1 wiskundelessen. Ja, één leraar voor één student, zowel voor middelbare school als high school leerlingen.



© www.asafraction.net