Wat is 0.0878 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.0878 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.0878 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.0878 als een breuk is 878/10000 of 439/5000

Laten we nu de stappen doornemen voor het omzetten van 0.0878 naar een breuk.

Stap 1:

Allereerst drukken we 0.0878 uit als een breuk door het boven 1 te plaatsen:
0.0878/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.0878 x 10000/1 x 10000
  =  
878/10000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 878 en 10000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 878 zijn: 1 2 439 878
De factoren van 10000 zijn: 1 2 4 5 8 10 16 20 25 40 50 80 100 125 200 250 400 500 625 1000 1250 2000 2500 5000 10000
De GGF van 878 en 10000 is: 2

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 2 in dit geval.
878 ÷ 2/10000 ÷ 2
  =  
439/5000


Goed gedaan! We hebben net vastgesteld dat 0.0878 als een breuk gelijk is aan 878/10000 of 439/5000 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:


Voorbeelden van het omzetten van decimalen naar breuken

Oefening baart kunst! Bouw je vaardigheden in het omzetten van decimalen naar breuken door de volgende stapsgewijze voorbeelden te volgen:


Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn gemengde getallen?

Een gemengd getal bestaat uit een geheel getal en een eigen breuk.

Wat zijn samengestelde getallen?

Samengestelde getallen zijn getallen groter dan 1 die meer dan twee delers hebben. Bijvoorbeeld, 6 is een samengesteld getal omdat het de delers 1, 2, 3 en 6 heeft.

Wat zijn rationale getallen?

Een rationaal getal is elk getal dat kan worden uitgedrukt als de breuk van twee gehele getallen, zoals 3/4, -5/2, of 0.75.

Wat is een vierkantswortel?

De vierkantswortel van een getal is de waarde die, wanneer vermenigvuldigd met zichzelf, dat getal oplevert. Bijvoorbeeld, de vierkantswortel van 9 is 3 omdat 3 × 3 = 9.

Wat is het afronden van decimalen?

Het afronden van decimalen betekent het aanpassen van een getal naar een bepaalde plaatswaarde. Bijvoorbeeld, het afronden van 3.186 naar twee decimalen geeft 3.19. Let op dat het laatste cijfer, dat is 6, dichter bij 10 ligt dan bij 1, dus het cijfer ervoor, 8, wordt verhoogd naar 9.

Wat is een percentage als een breuk?

Een percentage kan als een breuk worden geschreven door het boven 100 te plaatsen en het te vereenvoudigen. Bijvoorbeeld, 20% = 20/100 = 1/5.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Voor vroege leerlingen raden we IXL Wiskunde aan. De wiskundecursussen variëren van Pre-K tot 12de klas.

Voor een op het VK gebaseerd curriculum biedt BBC.co.uk nuttige hulpmiddelen voor wiskundelessen in de klas.

Op maat gemaakt voor universitaire studenten, Paul's online wiskunde-notities laat studenten zelfstandig studeren voor hun wiskundelessen. Het is ook een gratis service.



© www.asafraction.net