Wat is 0.19936 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.19936 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.19936 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.19936 als een breuk is 19936/100000 of 623/3125

Laten we nu de stappen doornemen voor het omzetten van 0.19936 naar een breuk.

Stap 1:

Allereerst drukken we 0.19936 uit als een breuk door het boven 1 te plaatsen:
0.19936/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.19936 x 100000/1 x 100000
  =  
19936/100000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 19936 en 100000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 19936 zijn: 1 2 4 7 8 14 16 28 32 56 89 112 178 224 356 623 712 1246 1424 2492 2848 4984 9968 19936
De factoren van 100000 zijn: 1 2 4 5 8 10 16 20 25 32 40 50 80 100 125 160 200 250 400 500 625 800 1000 1250 2000 2500 3125 4000 5000 6250 10000 12500 20000 25000 50000 100000
De GGF van 19936 en 100000 is: 32

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 32 in dit geval.
19936 ÷ 32/100000 ÷ 32
  =  
623/3125


Goed gedaan! We hebben net vastgesteld dat 0.19936 als een breuk gelijk is aan 19936/100000 of 623/3125 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:



Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn onjuiste breuken?

Onjuiste breuken zijn breuken waarbij de teller (het bovenste getal) groter dan of gelijk is aan de noemer (het onderste getal). Bijvoorbeeld 3/2

Wat zijn samengestelde getallen?

Samengestelde getallen zijn getallen groter dan 1 die meer dan twee delers hebben. Bijvoorbeeld, 6 is een samengesteld getal omdat het de delers 1, 2, 3 en 6 heeft.

Wat zijn rationale getallen?

Een rationaal getal is elk getal dat kan worden uitgedrukt als de breuk van twee gehele getallen, zoals 3/4, -5/2, of 0.75.

Wat is een proportie?

Een proportie is een vergelijking die stelt dat twee verhoudingen gelijk zijn. Bijvoorbeeld, 1/2 = 2/4 toont een proportionele relatie aan.

Hoe zet je een breuk om naar een decimaal?

Een breuk kan worden omgezet naar een decimaal door de teller door de noemer te delen. Bijvoorbeeld, 3/4 = 3 ÷ 4 = 0.75. Bekijk onze breuk pagina voor veel voorbeelden van hoe je breuken naar decimalen kunt omzetten.

Wat is een decimaal getal?

Een decimaal getal verwijst naar de positie van een cijfer rechts van de decimale punt. Bijvoorbeeld, in 3.141, staat het cijfer 1 op de duizendsten plaats.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Desmos.com richt zich op vergelijkingen, functies en visuele grafieken.

Wiskunde is leuk behandelt wiskundige onderwerpen, waaronder decimalen, breuken, gegevens, geld, algebra en calculus. Cursussen zijn ontworpen voor leerlingen van kleuterschool tot 12de klas.

Cliff-notities is afgestemd op zelfstandig studeren voor de SAT, ACT, GMAT, GRE en AP-examens. Het is een gratis service.



© www.asafraction.net