Wat is 0.345 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.345 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.345 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.345 als een breuk is 345/1000 of 69/200

Laten we nu de stappen doornemen voor het omzetten van 0.345 naar een breuk.

Stap 1:

Allereerst drukken we 0.345 uit als een breuk door het boven 1 te plaatsen:
0.345/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.345 x 1000/1 x 1000
  =  
345/1000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 345 en 1000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 345 zijn: 1 3 5 15 23 69 115 345
De factoren van 1000 zijn: 1 2 4 5 8 10 20 25 40 50 100 125 200 250 500 1000
De GGF van 345 en 1000 is: 5

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 5 in dit geval.
345 ÷ 5/1000 ÷ 5
  =  
69/200


Goed gedaan! We hebben net vastgesteld dat 0.345 als een breuk gelijk is aan 345/1000 of 69/200 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:



Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn eigen breuken?

Eigen breuken zijn breuken waarbij de teller (het bovenste getal) kleiner is dan de noemer (het onderste getal). Bijvoorbeeld 2/3

Wat zijn onjuiste breuken?

Onjuiste breuken zijn breuken waarbij de teller (het bovenste getal) groter dan of gelijk is aan de noemer (het onderste getal). Bijvoorbeeld 3/2

Wat zijn vereenvoudigde of gereduceerde breuken?

Vereenvoudigde of gereduceerde breuken zijn breuken waarvan het bovenste getal (de teller) en het onderste getal (de noemer) niet verder kunnen worden verkleind zonder de breuk ongeldig te maken. Dit betekent dat het getal niet meer door een ander getal dan 1 kan worden gedeeld zonder dat het nog een geheel getal blijft. 1/3 is een goed voorbeeld van een volledig vereenvoudigde breuk.

Wat zijn imperiale breuken?

Yards, voeten en inches maken allemaal deel uit van het imperiale meetsysteem, dus 1/4 van een inch wordt beschreven als een imperiale breuk.

Waarom is het nodig om decimalen om te zetten naar breuken?

De VS is een van de weinige landen wereldwijd die nog steeds het imperiale meetsysteem gebruikt, wat een fractioneel meetsysteem is, waarbij items gemeten worden in voeten, inches, ponden, ounces, yards, enzovoort. De meeste andere landen gebruiken het metrieke systeem, wat een decimaal meetsysteem is, waarbij items gemeten worden in cm, meters, grammen, kilo's, enzovoort.

Wat is een breuk als een percentage?

Een breuk kan worden omgezet naar een percentage door de teller door de noemer te delen en het resultaat met 100 te vermenigvuldigen. Bijvoorbeeld, 3/6 = 1/2 = 0.50 × 100 = 50%.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Voor leerplezier op basis van games, probeer Wonderwiskunde.

Wiskundige Planeet heeft op maat gemaakte wiskundecursussen voor middelbare scholieren.

Voor zelfstudiecursussen voor Algebra raden we Paarse wiskunde aan.



© www.asafraction.net