Wat is 0.372 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.372 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.372 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.372 als een breuk is 372/1000 of 93/250

Laten we nu de stappen doornemen voor het omzetten van 0.372 naar een breuk.

Stap 1:

Allereerst drukken we 0.372 uit als een breuk door het boven 1 te plaatsen:
0.372/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.372 x 1000/1 x 1000
  =  
372/1000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 372 en 1000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 372 zijn: 1 2 3 4 6 12 31 62 93 124 186 372
De factoren van 1000 zijn: 1 2 4 5 8 10 20 25 40 50 100 125 200 250 500 1000
De GGF van 372 en 1000 is: 4

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 4 in dit geval.
372 ÷ 4/1000 ÷ 4
  =  
93/250


Goed gedaan! We hebben net vastgesteld dat 0.372 als een breuk gelijk is aan 372/1000 of 93/250 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:



Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn gemengde getallen?

Een gemengd getal bestaat uit een geheel getal en een eigen breuk.

Wat zijn eigen breuken?

Eigen breuken zijn breuken waarbij de teller (het bovenste getal) kleiner is dan de noemer (het onderste getal). Bijvoorbeeld 2/3

Wat zijn onjuiste breuken?

Onjuiste breuken zijn breuken waarbij de teller (het bovenste getal) groter dan of gelijk is aan de noemer (het onderste getal). Bijvoorbeeld 3/2

Wat zijn vereenvoudigde of gereduceerde breuken?

Vereenvoudigde of gereduceerde breuken zijn breuken waarvan het bovenste getal (de teller) en het onderste getal (de noemer) niet verder kunnen worden verkleind zonder de breuk ongeldig te maken. Dit betekent dat het getal niet meer door een ander getal dan 1 kan worden gedeeld zonder dat het nog een geheel getal blijft. 1/3 is een goed voorbeeld van een volledig vereenvoudigde breuk.

Wat is de mediaan?

De mediaan is de middelste waarde in een set getallen wanneer de getallen in volgorde zijn gerangschikt. Als er twee middelste getallen zijn, is de mediaan het gemiddelde van die beide getallen.

Wat is een breuk als een percentage?

Een breuk kan worden omgezet naar een percentage door de teller door de noemer te delen en het resultaat met 100 te vermenigvuldigen. Bijvoorbeeld, 3/6 = 1/2 = 0.50 × 100 = 50%.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Kunst van probleemoplossing biedt cursussen die zijn afgestemd op schoolleerlingen, inclusief basisschool, middelbare school en high school.

Wiskunde is leuk behandelt wiskundige onderwerpen, waaronder decimalen, breuken, gegevens, geld, algebra en calculus. Cursussen zijn ontworpen voor leerlingen van kleuterschool tot 12de klas.

Voor zelfstudiecursussen voor Algebra raden we Paarse wiskunde aan.



© www.asafraction.net