Wat is 0.6590 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 0.6590 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 0.6590 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

0.6590 als een breuk is 6590/10000 of 659/1000

Laten we nu de stappen doornemen voor het omzetten van 0.6590 naar een breuk.

Stap 1:

Allereerst drukken we 0.6590 uit als een breuk door het boven 1 te plaatsen:
0.6590/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
0.6590 x 10000/1 x 10000
  =  
6590/10000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 6590 en 10000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 6590 zijn: 1 2 5 10 659 1318 3295 6590
De factoren van 10000 zijn: 1 2 4 5 8 10 16 20 25 40 50 80 100 125 200 250 400 500 625 1000 1250 2000 2500 5000 10000
De GGF van 6590 en 10000 is: 10

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 10 in dit geval.
6590 ÷ 10/10000 ÷ 10
  =  
659/1000


Goed gedaan! We hebben net vastgesteld dat 0.6590 als een breuk gelijk is aan 6590/10000 of 659/1000 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:


Voorbeelden van het omzetten van decimalen naar breuken

Oefening baart kunst! Bouw je vaardigheden in het omzetten van decimalen naar breuken door de volgende stapsgewijze voorbeelden te volgen:


Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn eigen breuken?

Eigen breuken zijn breuken waarbij de teller (het bovenste getal) kleiner is dan de noemer (het onderste getal). Bijvoorbeeld 2/3

Wat zijn irrationale getallen?

Een irrationaal getal is een getal dat niet kan worden uitgedrukt als een breuk van twee gehele getallen. Voorbeelden zijn π (pi) en √2 (de vierkantswortel van 2).

Wat is een percentage?

Een percentage is een getal als een breuk van 100. Het wordt aangeduid met het '%' symbool. Bijvoorbeeld, 20% betekent 20 van de 100.

Wat is een decimaal?

Een decimaal is een getal dat een decimale punt bevat, die een fractie van een geheel getal vertegenwoordigt. Bijvoorbeeld, 0.5 vertegenwoordigt 1/2.

Wat is een vierkantswortel?

De vierkantswortel van een getal is de waarde die, wanneer vermenigvuldigd met zichzelf, dat getal oplevert. Bijvoorbeeld, de vierkantswortel van 9 is 3 omdat 3 × 3 = 9.

Hoe zet je een breuk om naar een decimaal?

Een breuk kan worden omgezet naar een decimaal door de teller door de noemer te delen. Bijvoorbeeld, 3/4 = 3 ÷ 4 = 0.75. Bekijk onze breuk pagina voor veel voorbeelden van hoe je breuken naar decimalen kunt omzetten.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Verbeter je wiskundige vaardigheden met Brilliant.org interactieve probleemoplossingspuzzels ontworpen voor volwassenen. Algebra, geometrie, logica en waarschijnlijkheid worden behandeld met videohandleidingen.

Wiskunde is leuk behandelt wiskundige onderwerpen, waaronder decimalen, breuken, gegevens, geld, algebra en calculus. Cursussen zijn ontworpen voor leerlingen van kleuterschool tot 12de klas.

Voor een op het VK gebaseerd curriculum biedt BBC.co.uk nuttige hulpmiddelen voor wiskundelessen in de klas.



© www.asafraction.net