Wat is 1.2366 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 1.2366 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 1.2366 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

1.2366 als een breuk is 12366/10000 of 6183/5000

Laten we nu de stappen doornemen voor het omzetten van 1.2366 naar een breuk.

Stap 1:

Allereerst drukken we 1.2366 uit als een breuk door het boven 1 te plaatsen:
1.2366/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
1.2366 x 10000/1 x 10000
  =  
12366/10000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 12366 en 10000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 12366 zijn: 1 2 3 6 9 18 27 54 229 458 687 1374 2061 4122 6183 12366
De factoren van 10000 zijn: 1 2 4 5 8 10 16 20 25 40 50 80 100 125 200 250 400 500 625 1000 1250 2000 2500 5000 10000
De GGF van 12366 en 10000 is: 2

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 2 in dit geval.
12366 ÷ 2/10000 ÷ 2
  =  
6183/5000


Goed gedaan! We hebben net vastgesteld dat 1.2366 als een breuk gelijk is aan 12366/10000 of 6183/5000 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:



Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn gemengde getallen?

Een gemengd getal bestaat uit een geheel getal en een eigen breuk.

Wat zijn eigen breuken?

Eigen breuken zijn breuken waarbij de teller (het bovenste getal) kleiner is dan de noemer (het onderste getal). Bijvoorbeeld 2/3

Wat zijn vereenvoudigde of gereduceerde breuken?

Vereenvoudigde of gereduceerde breuken zijn breuken waarvan het bovenste getal (de teller) en het onderste getal (de noemer) niet verder kunnen worden verkleind zonder de breuk ongeldig te maken. Dit betekent dat het getal niet meer door een ander getal dan 1 kan worden gedeeld zonder dat het nog een geheel getal blijft. 1/3 is een goed voorbeeld van een volledig vereenvoudigde breuk.

Wat is een decimaal?

Een decimaal is een getal dat een decimale punt bevat, die een fractie van een geheel getal vertegenwoordigt. Bijvoorbeeld, 0.5 vertegenwoordigt 1/2.

Wat is de mediaan?

De mediaan is de middelste waarde in een set getallen wanneer de getallen in volgorde zijn gerangschikt. Als er twee middelste getallen zijn, is de mediaan het gemiddelde van die beide getallen.

Wat is een percentage als een breuk?

Een percentage kan als een breuk worden geschreven door het boven 100 te plaatsen en het te vereenvoudigen. Bijvoorbeeld, 20% = 20/100 = 1/5.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Desmos.com richt zich op vergelijkingen, functies en visuele grafieken.

Wiskundige Planeet heeft op maat gemaakte wiskundecursussen voor middelbare scholieren.

Op maat gemaakt voor universitaire studenten, Paul's online wiskunde-notities laat studenten zelfstandig studeren voor hun wiskundelessen. Het is ook een gratis service.



© www.asafraction.net