Wat is 1.4846 als een breuk?

In dit artikel begeleiden we je stap voor stap door het proces van het omzetten van het decimale getal 1.4846 naar een breuk. We beginnen met het begrijpen van hoe een decimaal het breukdeel van een getal vertegenwoordigt, en vervolgens breken we de stappen af om 1.4846 als een breuk te herschrijven. Ten slotte vereenvoudigen we de breuk door de Grootste Gemene Factor te identificeren en toe te passen, zodat het resultaat in de eenvoudigste vorm wordt weergegeven.

Aan het einde van deze gids zou je een goed begrip moeten hebben van het omzetten van decimale getallen naar breuken en in staat moeten zijn deze kennis toe te passen op verschillende wiskundige problemen. Laten we beginnen.

1.4846 als een breuk is 14846/10000 of 7423/5000

Laten we nu de stappen doornemen voor het omzetten van 1.4846 naar een breuk.

Stap 1:

Allereerst drukken we 1.4846 uit als een breuk door het boven 1 te plaatsen:
1.4846/1

Stap 2:

Vervolgens vermenigvuldigen we zowel de teller als de noemer met 10 voor elk cijfer na het decimale punt.
1.4846 x 10000/1 x 10000
  =  
14846/10000

Stap 3:

Vervolgens vinden we de Grootste Gemene Factor (GGF) van 14846 en 10000. Houd er rekening mee dat een factor gewoon een getal is dat in een ander getal deelt zonder rest.
De factoren van 14846 zijn: 1 2 13 26 571 1142 7423 14846
De factoren van 10000 zijn: 1 2 4 5 8 10 16 20 25 40 50 80 100 125 200 250 400 500 625 1000 1250 2000 2500 5000 10000
De GGF van 14846 en 10000 is: 2

Stap 4:

Om de breuk te vereenvoudigen, delen we zowel de teller als de noemer door hun grootste gemene factor (GGF), die we in de vorige stap hebben berekend. De GGF is 2 in dit geval.
14846 ÷ 2/10000 ÷ 2
  =  
7423/5000


Goed gedaan! We hebben net vastgesteld dat 1.4846 als een breuk gelijk is aan 14846/10000 of 7423/5000 in de eenvoudigste vorm.

Zet elk decimaal om naar een breuk

Ontdek hoe verschillende decimale getallen als breuken kunnen worden uitgedrukt.

Voer een decimale waarde in:


Voorbeelden van het omzetten van decimalen naar breuken

Oefening baart kunst! Bouw je vaardigheden in het omzetten van decimalen naar breuken door de volgende stapsgewijze voorbeelden te volgen:


Veelgestelde wiskundevragen, inclusief decimalen en breuken

Lees het volgende gedeelte om je begrip van basiswiskundige concepten te verdiepen.

Wat zijn onjuiste breuken?

Onjuiste breuken zijn breuken waarbij de teller (het bovenste getal) groter dan of gelijk is aan de noemer (het onderste getal). Bijvoorbeeld 3/2

Wat zijn priemgetallen?

Priemgetallen zijn getallen groter dan 1 die slechts twee delers hebben: 1 en zichzelf. Voorbeelden zijn 2, 3, 5, 7, 11, 13, 17 enzovoort.

Wat is een exponent?

Een exponent verwijst naar het aantal keren dat een getal (de basis) met zichzelf wordt vermenigvuldigd. Bijvoorbeeld, 2³ betekent 2 × 2 × 2 = 8.

Wat is een vierkantswortel?

De vierkantswortel van een getal is de waarde die, wanneer vermenigvuldigd met zichzelf, dat getal oplevert. Bijvoorbeeld, de vierkantswortel van 9 is 3 omdat 3 × 3 = 9.

Wat is de mediaan?

De mediaan is de middelste waarde in een set getallen wanneer de getallen in volgorde zijn gerangschikt. Als er twee middelste getallen zijn, is de mediaan het gemiddelde van die beide getallen.

Wat is een eindige decimaal?

Een eindige decimaal is een decimaal getal dat een eindig aantal cijfers heeft na de decimale punt. Bijvoorbeeld, 0.35 en 3.5 zijn eindige decimalen.


Educatieve wiskundelinks

Er zijn tal van online bronnen beschikbaar (sommige gratis en sommige betaald) om wiskunde te leren, inclusief decimalen en breuken. Deze variëren van interactieve spellen tot diepgaande cursussen en lessen. Wij raden deze websites aan als een waardevolle bron voor studenten van alle niveaus.

Voor gepersonaliseerde 1-op-1 lessen, kijk op Preply.com.

Voor vroege leerlingen raden we IXL Wiskunde aan. De wiskundecursussen variëren van Pre-K tot 12de klas.

Wiskunde is leuk behandelt wiskundige onderwerpen, waaronder decimalen, breuken, gegevens, geld, algebra en calculus. Cursussen zijn ontworpen voor leerlingen van kleuterschool tot 12de klas.



© www.asafraction.net