¿Qué es 1.3418 como fracción?

En este artículo, te guiaremos paso a paso a través del proceso de convertir el decimal 1.3418 en una fracción. Comenzaremos por entender cómo un decimal representa la parte fraccionaria de un número, luego desglosaremos los pasos para reescribir 1.3418 como una fracción. Finalmente, simplificaremos la fracción identificando y aplicando el Mayor Factor Común, asegurándonos de que los resultados estén en su forma más simple.

Al final de esta guía, deberías tener una buena comprensión de las conversiones de decimales a fracciones y ser capaz de aplicar este conocimiento a varios problemas matemáticos. Comencemos.

1.3418 como fracción es igual a 13418/10000 o 6709/5000

Ahora desglosaremos los pasos para convertir 1.3418 en una fracción.

Paso 1:

Primero, expresamos 1.3418 como una fracción colocándolo sobre 1:
1.3418/1

Paso 2:

A continuación, multiplicamos tanto el numerador como el denominador por 10 por cada dígito después del punto decimal.
1.3418 x 10000/1 x 10000
  =  
13418/10000

Paso 3:

A continuación, encontramos el Máximo Común Divisor (MCD) de 13418 y 10000. Recuerda que un factor es simplemente un número que divide a otro número sin dejar residuo.
Los factores de 13418 son: 1 2 6709 13418
Los factores de 10000 son: 1 2 4 5 8 10 16 20 25 40 50 80 100 125 200 250 400 500 625 1000 1250 2000 2500 5000 10000
El MCD de 13418 y 10000 es: 2

Paso 4:

Para simplificar la fracción, dividimos tanto el numerador como el denominador por su máximo común divisor (MCD), que calculamos en el paso anterior. En este caso, el valor del MCD es 2.
13418 ÷ 2/10000 ÷ 2
  =  
6709/5000


¡Gran trabajo! Acabamos de determinar que 1.3418 como fracción es igual a 13418/10000 o 6709/5000 en su forma más simple.

Convierte cualquier decimal en una fracción

Descubre cómo diferentes números decimales pueden expresarse como fracciones.

Ingresa cualquier valor decimal:



Preguntas frecuentes de matemáticas, incluyendo decimales y fracciones

Lee la siguiente sección para profundizar tu comprensión de los conceptos básicos de matemáticas.

¿Qué son las fracciones impropias?

Las fracciones impropias son fracciones donde el numerador (el número de arriba) es mayor o igual que el denominador (el número de abajo). Ejemplo 3/2

¿Qué es un porcentaje?

Un porcentaje es un número como una fracción de 100. Se denota utilizando el símbolo '%'. Por ejemplo, 20% significa 20 de 100.

¿Qué es un decimal finito?

Un decimal finito es un número decimal que tiene un número finito de dígitos después del punto decimal. Por ejemplo, 0.35 y 3.5 son decimales finitos.

¿Qué es un decimal periódico?

Un decimal periódico es un decimal en el que un dígito o grupo de dígitos se repite infinitamente. Por ejemplo, 0.3333... (donde 3 se repite para siempre) y 0.142857142857... (donde 142857 se repite) son decimales periódicos.

¿Cómo se convierte una fracción en un decimal?

Una fracción se puede convertir en un decimal dividiendo el numerador por el denominador. Por ejemplo, 3/4 = 3 ÷ 4 = 0.75. Consulta nuestra página de fracciones para muchos ejemplos sobre cómo convertir fracciones a decimales.

¿Qué es una fracción como porcentaje?

Una fracción se puede convertir a porcentaje dividiendo el numerador por el denominador y multiplicando por 100. Por ejemplo, 3/6 = 1/2 = 0.50 × 100 = 50%.


Enlaces educativos de matemáticas

Existen numerosos recursos en línea disponibles (algunos gratuitos y otros pagos) para aprender matemáticas, incluidos decimales y fracciones. Estos recursos van desde juegos interactivos hasta cursos y lecciones en profundidad. Recomendamos estos sitios web como un recurso valioso para estudiantes de todos los niveles.

Desarrolla habilidades matemáticas con los rompecabezas interactivos de resolución de problemas de Brilliant.org, diseñados para adultos. Se cubren álgebra, geometría, lógica y probabilidad con guías en video.

Para un plan de estudios basado en el Reino Unido, BBC.co.uk proporciona una útil ayuda en el aula para las lecciones de matemáticas.

Fusion Academy ofrece clases individuales de matemáticas. Sí, un maestro por estudiante tanto para secundaria como preparatoria.



© www.asafraction.net