In questo articolo, ti guideremo passo dopo passo attraverso il processo di conversione del decimale .2 in una frazione. Inizieremo comprendendo come un decimale rappresenti la parte frazionaria di un numero, quindi analizzeremo i passaggi per riscrivere .2 come frazione. Infine, semplificheremo la frazione identificando e applicando il massimo comun divisore, assicurandoci che il risultato sia nella forma più semplice.
Alla fine di questa guida, dovresti avere una buona comprensione delle conversioni da decimale a frazione e essere in grado di applicare questa conoscenza a vari problemi matematici. Iniziamo.
Passaggio 1:
Per prima cosa, esprimiamo .2 come frazione ponendolo sopra 1:Passaggio 2:
Successivamente, moltiplichiamo sia il numeratore che il denominatore per 10 per ogni cifra dopo il punto decimale.Passaggio 3:
Ora troviamo il Massimo Comun Divisore (MCD) per 2 e 10. Ricorda che un fattore è semplicemente un numero che divide un altro numero senza resto.Passaggio 4:
Per semplificare la frazione, dividiamo sia il numeratore che il denominatore per il loro massimo comun divisore (MCD), che abbiamo calcolato nel passaggio precedente. Il valore del MCD in questo caso è 2.Scopri come diversi numeri decimali possano essere espressi come frazioni.
La pratica rende perfetti! Migliora le tue abilità nella conversione dei decimali in frazioni seguendo questi esempi passo dopo passo:
Leggi la sezione seguente per approfondire la tua comprensione dei concetti matematici di base.
Le frazioni semplici o ridotte sono frazioni il cui numeratore (numero superiore) e denominatore (numero inferiore) non possono essere ulteriormente ridotti, pur rimanendo numeri interi. Vale a dire, il numero non può più essere diviso per nessun altro numero se non uno, pur rimanendo un numero intero. 1/3 è un buon esempio di frazione completamente ridotta.
Un numero razionale è qualsiasi numero che può essere espresso come frazione di due numeri interi, come 3/4, -5/2 o 0,75.
Una proporzione è un'equazione che afferma che due rapporti sono uguali. Ad esempio, 1/2 = 2/4 mostra una relazione proporzionale.
Un decimale periodico è un decimale in cui una cifra o un gruppo di cifre si ripete all'infinito. Ad esempio, 0,3333... (dove 3 si ripete all'infinito) e 0,142857142857... (dove 142857 si ripete) sono decimali periodici.
Per convertire un decimale in frazione, scrivi il decimale come frazione con un denominatore di 10, 100 o 1000 a seconda delle posizioni decimali, quindi semplifica. Ad esempio, 0,75 = 75/100 = 3/4. Consulta la nostra pagina sui decimali qui per una panoramica dettagliata..
Una frazione può essere convertita in percentuale dividendo il numeratore per il denominatore e moltiplicando per 100. Ad esempio, 3/6 = 1/2 = 0,50 × 100 = 50%.
Esistono numerose risorse online disponibili (alcune gratuite e altre a pagamento) per imparare la matematica, inclusi decimali e frazioni. Queste vanno dai giochi interattivi a corsi e lezioni approfondite. Raccomandiamo questi siti web come risorsa preziosa per studenti di tutti i livelli di abilità.
Usa Study.com per un approccio alle lezioni video divertente.
Per lezioni personalizzate 1-1 visita Preply.com.
Il pianeta della matematica offre corsi di matematica personalizzati per gli studenti delle scuole superiori.