In questo articolo, ti guideremo passo dopo passo attraverso il processo di conversione del decimale .72 in una frazione. Inizieremo comprendendo come un decimale rappresenti la parte frazionaria di un numero, quindi analizzeremo i passaggi per riscrivere .72 come frazione. Infine, semplificheremo la frazione identificando e applicando il massimo comun divisore, assicurandoci che il risultato sia nella forma più semplice.
Alla fine di questa guida, dovresti avere una buona comprensione delle conversioni da decimale a frazione e essere in grado di applicare questa conoscenza a vari problemi matematici. Iniziamo.
Passaggio 1:
Per prima cosa, esprimiamo .72 come frazione ponendolo sopra 1:Passaggio 2:
Successivamente, moltiplichiamo sia il numeratore che il denominatore per 10 per ogni cifra dopo il punto decimale.Passaggio 3:
Ora troviamo il Massimo Comun Divisore (MCD) per 72 e 100. Ricorda che un fattore è semplicemente un numero che divide un altro numero senza resto.Passaggio 4:
Per semplificare la frazione, dividiamo sia il numeratore che il denominatore per il loro massimo comun divisore (MCD), che abbiamo calcolato nel passaggio precedente. Il valore del MCD in questo caso è 4.Scopri come diversi numeri decimali possano essere espressi come frazioni.
La pratica rende perfetti! Migliora le tue abilità nella conversione dei decimali in frazioni seguendo questi esempi passo dopo passo:
Leggi la sezione seguente per approfondire la tua comprensione dei concetti matematici di base.
Le frazioni improprie sono frazioni in cui il numeratore (il numero superiore) è maggiore o uguale al denominatore (il numero inferiore). Esempio 3/2
Le frazioni semplici o ridotte sono frazioni il cui numeratore (numero superiore) e denominatore (numero inferiore) non possono essere ulteriormente ridotti, pur rimanendo numeri interi. Vale a dire, il numero non può più essere diviso per nessun altro numero se non uno, pur rimanendo un numero intero. 1/3 è un buon esempio di frazione completamente ridotta.
Il Minimo Comune Multiplo (MCM) di due o più numeri è il numero più piccolo che è un multiplo di ciascuno dei numeri dati. Ad esempio, il MCM di 4 e 6 è 12.
Un decimale periodico è un decimale in cui una cifra o un gruppo di cifre si ripete all'infinito. Ad esempio, 0,3333... (dove 3 si ripete all'infinito) e 0,142857142857... (dove 142857 si ripete) sono decimali periodici.
Un posto decimale si riferisce alla posizione di una cifra a destra del punto decimale. Ad esempio, in 3,141, la cifra 1 è nel posto dei millesimi.
Un decimale può essere convertito in percentuale moltiplicandolo per 100 e aggiungendo il simbolo di percentuale. Ad esempio, 0,75 × 100 = 75%.
Esistono numerose risorse online disponibili (alcune gratuite e altre a pagamento) per imparare la matematica, inclusi decimali e frazioni. Queste vanno dai giochi interattivi a corsi e lezioni approfondite. Raccomandiamo questi siti web come risorsa preziosa per studenti di tutti i livelli di abilità.
Per lezioni personalizzate 1-1 visita Preply.com.
La matematica è divertente copre argomenti matematici tra cui decimali, frazioni, dati, denaro, algebra e calcolo. I corsi sono progettati per studenti dalla scuola materna al grado 12.
Per un curriculum basato nel Regno Unito, BBC.co.uk fornisce un utile supporto per le lezioni di matematica.