In questo articolo, ti guideremo passo dopo passo attraverso il processo di conversione del decimale 3.53 in una frazione. Inizieremo comprendendo come un decimale rappresenti la parte frazionaria di un numero, quindi analizzeremo i passaggi per riscrivere 3.53 come frazione. Infine, semplificheremo la frazione identificando e applicando il massimo comun divisore, assicurandoci che il risultato sia nella forma più semplice.
Alla fine di questa guida, dovresti avere una buona comprensione delle conversioni da decimale a frazione e essere in grado di applicare questa conoscenza a vari problemi matematici. Iniziamo.
Passaggio 1:
Per prima cosa, esprimiamo 3.53 come frazione ponendolo sopra 1:Passaggio 2:
Successivamente, moltiplichiamo sia il numeratore che il denominatore per 10 per ogni cifra dopo il punto decimale.Scopri come diversi numeri decimali possano essere espressi come frazioni.
La pratica rende perfetti! Migliora le tue abilità nella conversione dei decimali in frazioni seguendo questi esempi passo dopo passo:
Leggi la sezione seguente per approfondire la tua comprensione dei concetti matematici di base.
Gli Stati Uniti sono uno dei pochi paesi al mondo che usano ancora il sistema di misurazione imperiale, che è un sistema frazionario, in cui gli oggetti sono misurati in piedi, pollici, libbre, once, iarde e così via. La maggior parte del resto del mondo usa il sistema metrico, che è un sistema di misurazione decimale, in cui gli oggetti sono misurati in cm, metri, grammi, chili e così via.
Il Minimo Comune Multiplo (MCM) di due o più numeri è il numero più piccolo che è un multiplo di ciascuno dei numeri dati. Ad esempio, il MCM di 4 e 6 è 12.
Un decimale è un numero che include un punto decimale, rappresentando una frazione di un intero. Ad esempio, 0,5 rappresenta 1/2.
La radice quadrata di un numero è un valore che, moltiplicato per se stesso, dà quel numero. Ad esempio, la radice quadrata di 9 è 3 perché 3 × 3 = 9.
Un decimale finito è un numero decimale che ha un numero finito di cifre dopo il punto decimale. Ad esempio, 0,35 e 3,5 sono decimali finiti.
Un decimale periodico è un decimale in cui una cifra o un gruppo di cifre si ripete all'infinito. Ad esempio, 0,3333... (dove 3 si ripete all'infinito) e 0,142857142857... (dove 142857 si ripete) sono decimali periodici.
Esistono numerose risorse online disponibili (alcune gratuite e altre a pagamento) per imparare la matematica, inclusi decimali e frazioni. Queste vanno dai giochi interattivi a corsi e lezioni approfondite. Raccomandiamo questi siti web come risorsa preziosa per studenti di tutti i livelli di abilità.
Per un approccio di apprendimento strutturato con lezioni video prova Khan Academy.
Desmos.com si concentra su equazioni, funzioni e grafici visivi.
La matematica è divertente copre argomenti matematici tra cui decimali, frazioni, dati, denaro, algebra e calcolo. I corsi sono progettati per studenti dalla scuola materna al grado 12.